image

Hyperspectral Image Segmentation

Research Project

The framework aims to automatically identify various regions within a hyperspectral image by classifying each pixel of the image and associating them to class segments. A multi-layer system will be developed, where each layer’s responsibility is to perform an operation on its input, generate region classification data, and pass the resultant output to the next layer. Importantly, each layer analyzes its input from distinct viewpoints, utilizing spectral and spatial data, resulting in a multi-layer frameworkwhere the layers complement each other. Since the system is highly parallelizable, we will exploit high performance computing (HPC) tools and resources to achieve a real-time performance.

View on GitHub

Features

Lorem ipsum dolor sit amet

commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse

image

Customized Application Development

image

Post and Pre Processing Tool Integration

image

Theme Design Implementation

image

JSON Coding Ability

SciGaP

Science Gateway Platform as a Service

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt laoreet dolore magna aliquam erat volutpat. wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip.

Learn More
image
image

SciGaP

Science Gateway Platform as a Service

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt laoreet dolore magna aliquam erat volutpat.
wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip.

Learn More

SciGaP

Science Gateway Platform as a Service

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt laoreet dolore magna aliquam erat volutpat.
wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip.

Learn More
image

News and Events

Lorem ipsum dolor sit amet dolore te feugait nulla facilisi.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh

image

Lorem ipsum dolor sit amet,

consectetuer adipiscing elit, sed diam nonummy nibh euis- mod tincidunt ut laoreet dolore magna

Read More
image

Lorem ipsum dolor sit amet,

consectetuer adipiscing elit, sed diam nonummy nibh euis- mod

Read More
image

Lorem ipsum dolor sit amet,

consectetuer adipiscing elit, sed diam nonummy nibh euis- mod tincidunt ut laoreet

Read More

Collaborators

Lorem ipsum dolor sit amet commodo consequat

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse

image
image
image
image
image
image
image
image
image

Meet Our Team

Lorem ipsum dolor sit amet commodo consequat

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse

image

John Doe

Engineer

image

John Doe

Engineer

image

John Doe

Engineer

image

John Doe

Engineer